Summary of medicine characteristics - Apixaban Accord
1. NAME OF THE MEDICINAL PRODUCT
Apixaban Accord 2.5 mg film-coated tablets
2. QUALITATIVE AND QUANTITATIVE COMPOSITION
Each film-coated tablet contains 2.5 mg apixaban.
Excipients with known effect
Each 2.5 mg film-coated tablet contains 51.97 mg lactose (see section 4.4).
For the full list of excipients, see section 6.1.
3. PHARMACEUTICAL FORM
Film-coated tablet (tablet)
Yellow, round shaped, approximate 6.00 mm in diameter, biconvex, film-coated tablet debossed with “IU1” on one side and plain on the other side.
4. CLINICAL PARTICULARS4.1 Therapeutic indications
Prevention of venous thromboembolic events (VTE) in adult patients who have undergone elective hip or knee replacement surgery.
Prevention of stroke and systemic embolism in adult patients with non-valvular atrial fibrillation (NVAF), with one or more risk factors, such as prior stroke or transient ischaemic attack (TIA); age > 75 years; hypertension; diabetes mellitus; symptomatic heart failure (NYHA Class > II).
Treatment of deep vein thrombosis (DVT) and pulmonary embolism (PE), and prevention of recurrent DVT and PE in adults (see section 4.4 for haemodynamically unstable PE patients).
4.2 Posology and method of administration
Posology
Prevention of VTE (VTEp): elective hip or knee replacement surgery
The recommended dose of apixaban is 2.5 mg taken orally twice daily. The initial dose should be taken 12 to 24 hours after surgery.
Physicians may consider the potential benefits of earlier anticoagulation for VTE prophylaxis as well as the risks of post-surgical bleeding in deciding on the time of administration within this time window.
In patients undergoing hip replacement surgery
The recommended duration of treatment is 32 to 38 days.
In patients undergoing knee replacement surgery
The recommended duration of treatment is 10 to 14 days.
Prevention of stroke and systemic embolism in patients with non-valvular atrial fibrillation (NVAF) The recommended dose of apixaban is 5 mg taken orally twice daily.
Dose reduction
The recommended dose of apixaban is 2.5 mg taken orally twice daily in patients with NVAF and at least two of the following characteristics: age > 80 years, body weight < 60 kg, or serum creatinine > 1.5 mg/dL (133 micromole/L).
Therapy should be continued long-term.
Treatment of DVT, treatment of PE and prevention of recurrent DVT and PE (VTEt)
The recommended dose of apixaban for the treatment of acute DVT and treatment of PE is 10 mg taken orally twice daily for the first 7 days followed by 5 mg taken orally twice daily. As per available medical guidelines, short duration of treatment (at least 3 months) should be based on transient risk factors (e.g., recent surgery, trauma, immobilisation).
The recommended dose of apixaban for the prevention of recurrent DVT and PE is 2.5 mg taken orally twice daily. When prevention of recurrent DVT and PE is indicated, the 2.5 mg twice daily dose should be initiated following completion of 6 months of treatment with apixaban 5 mg twice daily or with another anticoagulant, as indicated in Table 1 below (see also section 5.1).
Table 1: Dose recommendation (VTEt)
Dosing schedule | Maximum daily dose | |
Treatment of DVT or PE | 10 mg twice daily for the first 7 days | 20 mg |
followed by 5 mg twice daily | 10 mg | |
Prevention of recurrent DVT and/or PE following completion of 6 months of treatment for DVT or PE | 2.5 mg twice daily | 5 mg |
The duration of overall therapy should be individualised after careful assessment of the treatment benefit against the risk for bleeding (see section 4.4).
Missed dose
If a dose is missed, the patient should take Apixaban Accordimmediately and then continue with twice daily intake as before.
Switching
Switching treatment from parenteral anticoagulants to Apixaban Accord(and vice versa) can be done at the next scheduled dose (see section 4.5). These medicinal products should not be administered simultaneously.
Switching from vitamin K antagonist (VKA) therapy to Apixaban Accord
When converting patients from vitamin K antagonist (VKA) therapy to Apixaban Accord, warfarin or other VKA therapy should be discontinued and Apixaban Accord started when the international normalised ratio (INR) is < 2.
Switching from Apixaban Accord to VKA therapy
When converting patients from Apixaban Accord to VKA therapy, administration of Apixaban Accord should be continued for at least 2 days after beginning VKA therapy. After 2 days of coadministration of Apixaban Accord with VKA therapy, an INR should be obtained prior to the next scheduled dose of Apixaban Accord. Coadministration of Apixaban Accord and VKA therapy should be continued until the INR is > 2.
Elderly
VTEp and VTEt – No dose adjustment required (see sections 4.4 and 5.2).
NVAF – No dose adjustment required, unless criteria for dose reduction are met (see Dose reduction at the beginning of section 4.2).
Renal impairment
In patients with mild or moderate renal impairment, the following recommendations apply:
-
– for the prevention of VTE in elective hip or knee replacement surgery (VTEp), for the treatment of DVT, treatment of PE and prevention of recurrent DVT and PE (VTEt), no dose adjustment is necessary (see section 5.2).
-
– for the prevention of stroke and systemic embolism in patients with NVAF and serum creatinine > 1.5 mg/dL (133 micromole/L) associated with age > 80 years or body weight < 60 kg, a dose reduction is necessary and described above. In the absence of other criteria for dose reduction (age, body weight), no dose adjustment is necessary (see section 5.2).
In patients with severe renal impairment (creatinine clearance 15–29 mL/min) the following recommendations apply (see sections 4.4 and 5.2):
-
– for the prevention of VTE in elective hip or knee replacement surgery (VTEp), for the treatment of DVT, treatment of PE and prevention of recurrent DVT and PE (VTEt) apixaban is to be used with caution;
-
– for the prevention of stroke and systemic embolism in patients with NVAF, patients should receive the lower dose of apixaban 2.5 mg twice daily.
In patients with creatinine clearance < 15 mL/min, or in patients undergoing dialysis, there is no clinical experience therefore apixaban is not recommended (see sections 4.4 and 5.2).
Hepatic impairment
Apixaban Accordis contraindicated in patients with hepatic disease associated with coagulopathy and clinically relevant bleeding risk (see section 4.3).
It is not recommended in patients with severe hepatic impairment (see sections 4.4. and 5.2).
It should be used with caution in patients with mild or moderate hepatic impairment (Child Pugh A or B). No dose adjustment is required in patients with mild or moderate hepatic impairment (see sections 4.4 and 5.2).
Patients with elevated liver enzymes alanine aminotransferase (ALT)/aspartate aminotransferase (AST) >2 x ULN or total bilirubin > 1.5 x ULN were excluded in clinical studies. Therefore Apixaban Accordshould be used with caution in this population (see sections 4.4 and 5.2). Prior to initiatingApixaban Accord, liver function testing should be performed.
Body weight
VTEp and VTEt – No dose adjustment required (see sections 4.4 and 5.2).
NVAF – No dose adjustment required, unless criteria for dose reduction are met (see Dose reduction at the beginning of section 4.2).
Gender
No dose adjustment required (see section 5.2).
Patients undergoing catheter ablation (NVAF)
Patients can continue apixaban use while undergoing catheter ablation (see sections 4.3, 4.4 and 4.5).
Patients undergoing cardioversion
Apixaban can be initiated or continued in NVAF patients who may require cardioversion.
For patients not previously treated with anticoagulants, exclusion of left atrial thrombus using an image guided approach (e.g. transesophageal echocardiography (TEE) or computed tomographic scan (CT)) prior to cardioversion should be considered, in accordance with established medical guidelines.
For patients initiating treatment with apixaban, 5 mg should be given twice daily for at least 2.5 days (5 single doses) before cardioversion to ensure adequate anticoagulation (see section 5.1). The dosing regimen should be reduced to 2.5 mg apixaban given twice daily for at least 2.5 days (5 single doses) if the patient meets the criteria for dose reduction (see above sections Dose reduction and Renal impairment).
If cardioversion is required before 5 doses of apixaban can be administered, a 10 mg loading dose should be given, followed by 5 mg twice daily. The dosing regimen should be reduced to a 5 mg loading dose followed by 2.5 mg twice daily if the patient meets the criteria for dose reduction (see above sections Dose reduction and Renal impairment). The administration of the loading dose should be given at least 2 hours before cardioversion (see section 5.1).
For all patients undergoing cardioversion, confirmation should be sought prior to cardioversion that the patient has taken apixaban as prescribed. Decisions on initiation and duration of treatment should take established guideline recommendations for anticoagulant treatment in patients undergoing cardioversion into account.
Patients with NVAF and acute coronary syndrome (ACS) and/or percutaneous coronary intervention (PCI)
There is limited experience of treatment with apixaban at the recommended dose for NVAF patientswhen used in combination with antiplatelet agents in patients with ACS and/or undergoing PCI afterhaemostasis is achieved (see sections 4.4, 5.1).
Paediatric population
The safety and efficacy of Apixaban Accordin children and adolescents below age 18 have not been established. No data are available.
Method of administration
Oral use
Apixaban Accordshould be swallowed with water, with or without food.
For patients who are unable to swallow whole tablets, Apixaban Accordtablets may be crushed and suspended in water, or 5% glucose in water (G5W), or apple juice or mixed with apple puree and immediately administered orally (see section 5.2). Alternatively, Apixaban Accordtablets may be crushed and suspended in 60 mL of water or G5W and immediately delivered through a nasogastric tube (see section 5.2).
Crushed Apixaban Accord tablets are stable in water, G5W, apple juice, and apple puree for up to 4 hours.
4.3 Contraindications
- • Hypersensitivity to the active substance or to any of the excipients listed in section 6.1.
- • Active clinically significant bleeding.
- • Hepatic disease associated with coagulopathy and clinically relevant bleeding risk (see
-
section 5.2).
- • Lesion or condition if considered a significant risk factor for major bleeding. This may include current or recent gastrointestinal ulceration, presence of malignant neoplasms at high risk of bleeding, recent brain or spinal injury, recent brain, spinal or ophthalmic surgery, recent intracranial haemorrhage, known or suspected oesophageal varices, arteriovenous malformations, vascular aneurysms or major intraspinal or intracerebral vascular abnormalities.
- • Concomitant treatment with any other anticoagulant agent e.g., unfractionated heparin (UFH), low molecular weight heparins (enoxaparin, dalteparin, etc.), heparin derivatives (fondaparinux, etc.), oral anticoagulants (warfarin, rivaroxaban, dabigatran, etc.) except under specific circumstances of switching anticoagulant therapy (see section 4.2), or when UFH is given at doses necessary to maintain an open central venous or arterial catheter or when UFH is given during catheter ablation for atrial fibrillation (see sections 4.4 and 4.5).
4.4 Special warnings and precautions for use
Haemorrhage risk
As with other anticoagulants, patients taking apixaban are to be carefully observed for signs of bleeding. It is recommended to be used with caution in conditions with increased risk of haemorrhage. Apixaban administration should be discontinued if severe haemorrhage occurs (see sections 4.8 and 4.9).
Although treatment with apixaban does not require routine monitoring of exposure, a calibrated quantitative anti-Factor Xa assay may be useful in exceptional situations where knowledge of apixaban exposure may help to inform clinical decisions, e.g., overdose and emergency surgery (see section 5.1).
An agent to reverse the anti-factor Xa activity of apixaban is available.
Interaction with other medicinal products affecting haemostasis
Due to an increased bleeding risk, concomitant treatment with any other anticoagulants is contraindicated (see section 4.3).
The concomitant use of apixaban with antiplatelet agents increases the risk of bleeding (see section 4.5).
Care is to be taken if patients are treated concomitantly with selective serotonin reuptake inhibitors (SSRIs) or serotonin norepinephrine reuptake inhibitors (SNRIs), or non-steroidal anti-inflammatory medicinal products (NSAIDs), including acetylsalicylic acid.
Following surgery, other platelet aggregation inhibitors are not recommended concomitantly with apixaban (see section 4.5).
In patients with atrial fibrillation and conditions that warrant mono or dual antiplatelet therapy, a careful assessment of the potential benefits against the potential risks should be made before combining this therapy withApixaban Accord.
In a clinical study of patients with atrial fibrillation, concomitant use of acetylsalicylic acid (ASA ) increased the major bleeding risk on apixaban from 1.8% per year to 3.4% per year and increased the bleeding risk on warfarin from 2.7% per year to 4.6% per year. In this clinical study, there was limited (2.1%) use of concomitant dual antiplatelet therapy(see section 5.1).
A clinical study enrolled patients with atrial fibrillation with ACS and/or undergoing PCI and a plannedtreatment period with a P2Y12 inhibitor, with or without ASA, and oral anticoagulant (either apixabanor VKA) for 6 months. Concomitant use of ASA increased the risk of ISTH (International Society onThrombosis and Hemostasis) major or CRNM (Clinically Relevant Non-Major) bleeding in apixaban-treatedsubjects from 16.4% per year to 33.1% per year (see section 5.1).
In a clinical study of high-risk post acute coronary syndrome patientswithout atrial fibrillationcharacterised by multiple cardiac and non-cardiac comorbidities, who received ASA or the combination of ASA and clopidogrel, a significant increase in risk of ISTH (International Society on Thrombosis and Haemostasis) major bleeding was reported for apixaban (5.13% per year) compared to placebo (2.04% per year).
Use of thrombolytic agents for the treatment of acute ischemic stroke
There is very limited experience with the use of thrombolytic agents for the treatment of acute ischemic stroke in patients administered apixaban(see section 4.5).
Patients with prosthetic heart valves
Safety and efficacy of apixaban have not been studied in patients with prosthetic heart valves, with or without atrial fibrillation. Therefore, the use of Apixaban Accordis not recommended in this setting.
Patients with antiphospholipid syndrome
Direct acting oral anticoagulants (DOACs) including apixaban are not recommended for patients with a history of thrombosis who are diagnosed with antiphospholipid syndrome. In particular for patients that are triple positive (for lupus anticoagulant, anticardiolipin antibodies, and anti-beta 2-glycoprotein I antibodies), treatment with DOACs could be associated with increased rates of recurrent thrombotic events compared with vitamin K antagonist therapy.
Surgery and invasive procedures
Apixaban should be discontinued at least 48 hours prior to elective surgery or invasive procedures with a moderate or high risk of bleeding. This includes interventions for which the probability of clinically significant bleeding cannot be excluded or for which the risk of bleeding would be unacceptable.
Apixaban should be discontinued at least 24 hours prior to elective surgery or invasive procedures with a low risk of bleeding. This includes interventions for which any bleeding that occurs is expected to be minimal, non-critical in its location or easily controlled.
If surgery or invasive procedures cannot be delayed, appropriate caution should be exercised, taking into consideration an increased risk of bleeding. This risk of bleeding should be weighed against the urgency of intervention.
Apixaban should be restarted after the invasive procedure or surgical intervention as soon as possible provided the clinical situation allows and adequate haemostasis has been established (for cardioversion see section 4.2).
For patients undergoing catheter ablation for atrial fibrillation, Apixaban Accord treatment does not need to be interrupted (see sections 4.2, 4.3 and 4.5).
Temporary discontinuation
Discontinuing anticoagulants, includingApixaban Accord, for active bleeding, elective surgery, or invasive procedures places patients at an increased risk of thrombosis. Lapses in therapy should be avoided and if anticoagulation with apixaban must be temporarily discontinued for any reason, therapy should be restarted as soon as possible.
Spinal/epidural anaesthesia or puncture
When neuraxial anaesthesia (spinal/epidural anaesthesia) or spinal/epidural puncture is employed, patients treated with antithrombotic agents for prevention of thromboembolic complications are at risk of developing an epidural or spinal haematoma which can result in long-term or permanent paralysis. The risk of these events may be increased by the post-operative use of indwelling epidural catheters or the concomitant use of medicinal products affecting haemostasis. Indwelling epidural or intrathecal catheters must be removed at least 5 hours prior to the first dose of apixaban. The risk may also be increased by traumatic or repeated epidural or spinal puncture. Patients are to be frequently monitored for signs and symptoms of neurological impairment (e.g., numbness or weakness of the legs, bowel or bladder dysfunction). If neurological compromise is noted, urgent diagnosis and treatment is necessary. Prior to neuraxial intervention the physician should consider the potential benefit versus the risk in anticoagulated patients or in patients to be anticoagulated for thromboprophylaxis.
There is no clinical experience with the use of apixaban with indwelling intrathecal or epidural catheters. In case there is such need and based on the general PK characteristics of apixaban, a time interval of 20–30 hours (i.e., 2 x half-life) between the last dose of apixaban and catheter withdrawal should elapse, and at least one dose should be omitted before catheter withdrawal. The next dose of apixaban may be given at least 5 hours after catheter removal. As with all new anticoagulant medicinal products, experience with neuraxial blockade is limited and extreme caution is therefore recommended when using apixaban in the presence of neuraxial blockade.
Haemodynamically unstable PE patients or patients who require thrombolysis or pulmonary embolectomy
Apixaban is not recommended as an alternative to unfractionated heparin in patients with pulmonary embolism who are haemodynamically unstable or may receive thrombolysis or pulmonary embolectomy since the safety and efficacy of apixaban have not been established in these clinical situations.
Patients with active cancer
Patients with active cancer can be at high risk of both venous thromboembolism and bleeding events. When apixaban is considered for DVT or PE treatment in cancer patients, a careful assessment of the benefits against the risks should be made (see also section 4.3).
Patients with renal impairment
Limited clinical data indicate that apixaban plasma concentrations are increased in patients with severe renal impairment (creatinine clearance 15–29 mL/min) which may lead to an increased bleeding risk. For the prevention of VTE in elective hip or knee replacement surgery (VTEp), the treatment of DVT, treatment of PE and prevention of recurrent DVT and PE (VTEt), apixaban is to be used with caution in patients with severe renal impairment (creatinine clearance 15–29 mL/min) (see sections 4.2 and 5.2).
For the prevention of stroke and systemic embolism in patients with NVAF, patients with severe renal impairment (creatinine clearance 15–29 mL/min), and patients with serum creatinine > 1.5 mg/dL (133 micromole/L) associated with age > 80 years or body weight < 60 kg should receive the lower dose of apixaban 2.5 mg twice daily (see section 4.2).
In patients with creatinine clearance < 15 mL/min, or in patients undergoing dialysis, there is no clinical experience therefore apixaban is not recommended (see sections 4.2 and 5.2).
Elderly patients
Increasing age may increase haemorrhagic risk (see section 5.2).
Also, the coadministration of Apixaban with ASA in elderly patients should be used cautiously because of a potentially higher bleeding risk.
Body weight
Low body weight (< 60 kg) may increase haemorrhagic risk (see section 5.2).
Patients with hepatic impairment
Apixaban is contraindicated in patients with hepatic disease associated with coagulopathy and clinically relevant bleeding risk (see section 4.3).
It is not recommended in patients with severe hepatic impairment (see section 5.2).
It should be used with caution in patients with mild or moderate hepatic impairment (Child Pugh A or B) (see sections 4.2 and 5.2).
Patients with elevated liver enzymes ALT/AST > 2 x ULN or total bilirubin > 1.5 x ULN were excluded in clinical studies. Therefore apixaban should be used cautiously in this population (see section 5.2). Prior to initiating apixaban, liver function testing should be performed.
Interaction with inhibitors of both cytochrome P450 3A4 (CYP3A4) and P-glycoprotein (P-gp) The use of Apixaban Accordis not recommended in patients receiving concomitant systemic treatment with strong inhibitors of both CYP3A4 and P-gp, such as azole-antimycotics (e.g., ketoconazole, itraconazole, voriconazole and posaconazole) and HIV protease inhibitors (e.g., ritonavir). These medicinal products may increase apixaban exposure by 2-fold (see section 4.5), or greater in the presence of additional factors that increase apixaban exposure (e.g., severe renal impairment).
Interaction with inducers of both CYP3A4 and P-gp
The concomitant use of apixaban with strong CYP3A4 and P-gp inducers (e.g., rifampicin, phenytoin, carbamazepine, phenobarbital or St. John’s Wort) may lead to a ~50% reduction in apixaban exposure. In a clinical study in atrial fibrillation patients, diminished efficacy and a higher risk of bleeding were observed with coadministration of apixaban with strong inducers of both CYP3A4 and P-gp compared with using apixaban alone.
In patients receiving concomitant systemic treatment with strong inducers of both CYP3A4 and P-gp the following recommendations apply (see section 4.5):
-
A. – for the prevention of VTE in elective hip or knee replacement surgery, for the prevention of stroke and systemic embolism in patients with NVAF and for the prevention of recurrent DVT and PE, apixaban should be used with caution;
-
B. – for the treatment of DVT and treatment of PE, apixaban should not be used since efficacy may be compromised.
Hip fracture surgery
Apixaban has not been studied in clinical studies in patients undergoing hip fracture surgery to evaluate efficacy and safety in these patients. Therefore, it is not recommended in these patients.
Laboratory parameters
Clotting tests [e.g., prothrombin time (PT), INR, and activated partial thromboplastin time (aPTT)] are affected as expected by the mechanism of action of apixaban. Changes observed in these clotting tests at the expected therapeutic dose are small and subject to a high degree of variability (see section 5.1).
Information about excipients
Apixaban Accordcontains lactose. Patients with rare hereditary problems of galactose intolerance, total lactase deficiency or glucose-galactose malabsorption should not take this medicinal product.
This medicinal product contains less than 1 mmol sodium (23 mg) per tablet, that is to say essentially ‘sodium-free’.
4.5 Interaction with other medicinal products and other forms of interaction
Inhibitors of CYP3A4 and P-gp
Coadministration of apixaban with ketoconazole (400 mg once a day), a strong inhibitor of both CYP3A4 and P-gp, led to a 2-fold increase in mean apixaban AUC and a 1.6-fold increase in mean apixaban Cmax.
The use of apixaban is not recommended in patients receiving concomitant systemic treatment with strong inhibitors of both CYP3A4 and P-gp, such as azole-antimycotics (e.g., ketoconazole, itraconazole, voriconazole and posaconazole) and HIV protease inhibitors (e.g., ritonavir) (see section 4.4).
Active substances which are not considered strong inhibitors of both CYP3A4 and P-gp, (eg., amiodarone, clarithromycin, diltiazem, fluconazole, naproxen, quinidine, verapamil) are expected to increase apixaban plasma concentration to a lesser extent. No dose adjustment for apixaban is required when coadministered with agents that are not strong inhibitors of both CYP3A4 and P-gp. For example, diltiazem (360 mg once a day), considered a moderate CYP3A4 and a weak P-gp inhibitor, led to a 1.4-fold increase in mean apixaban AUC and a 1.3-fold increase in Cmax. Naproxen (500 mg, single dose) an inhibitor of P-gp but not an inhibitor of CYP3A4, led to a 1.5-fold and 1.6-fold increase in mean apixaban AUC and Cmax, respectively. Clarithromycin (500 mg, twice a day), an inhibitor of P-gp and a strong inhibitor of CYP3A4, led to a 1.6-fold and 1.3-fold increase in mean apixaban AUC and Cmax respectively.
Inducers of CYP3A4 and P-gp
Coadministration of apixaban with rifampicin, a strong inducer of both CYP3A4 and P-gp, led to an approximate 54% and 42% decrease in mean apixaban AUC and Cmax, respectively. The concomitant use of apixaban with other strong CYP3A4 and P-gp inducers (e.g., phenytoin, carbamazepine, phenobarbital or St. John’s Wort) may also lead to reduced apixaban plasma concentrations. No dose adjustment for apixaban is required during concomitant therapy with such medicinal products, however in patients receiving concomitant systemic treatment with strong inducers of both CYP3A4 and P-gp apixaban should be used with caution for the prevention of VTE in elective hip or knee replacement surgery, for the prevention of stroke and systemic embolism in patients with NVAF and for the prevention of recurrent DVT and PE.
Apixaban is not recommended for the treatment of DVT and PE in patients receiving concomitant systemic treatment with strong inducers of both CYP3A4 and P-gp since efficacy may be compromised (see section 4.4).
Anticoagulants, platelet aggregation inhibitors, SSRIs/SNRIs and NSAIDs
Due to an increased bleeding risk, concomitant treatment with any other anticoagulants is contraindicated except under specific circumstances of switching anticoagulant therapy, when UFH is given at doses necessary to maintain an open central venous or arterial catheter or when UFH is given during catheter ablation for atrial fibrillation (see section 4.3).
After combined administration of enoxaparin (40 mg single dose) with apixaban (5 mg single dose), an additive effect on anti-Factor Xa activity was observed.
Pharmacokinetic or pharmacodynamic interactions were not evident when apixaban was coadministered with ASA 325 mg once a day.
Apixaban coadministered with clopidogrel (75 mg once a day) or with the combination of clopidogrel 75 mg and ASA 162 mg once daily, or with prasugrel (60 mg followed by 10 mg once daily) in Phase I studies did not show a relevant increase in template bleeding time, or further inhibition of platelet aggregation, compared to administration of the antiplatelet agents without apixaban. Increases in clotting tests (PT, INR, and aPTT) were consistent with the effects of apixaban alone.
Naproxen (500 mg), an inhibitor of P-gp, led to a 1.5-fold and 1.6-fold increase in mean apixaban AUC and Cmax, respectively. Corresponding increases in clotting tests were observed for apixaban. No changes were observed in the effect of naproxen on arachidonic acid-induced platelet aggregation and no clinically relevant prolongation of bleeding time was observed after concomitant administration of apixaban and naproxen.
Despite these findings, there may be individuals with a more pronounced pharmacodynamic response when antiplatelet agents are coadministered with apixaban. Apixaban should be used with caution when coadministered with SSRIs/SNRIs, NSAIDs, ASA and/or P2Y12 inhibitors because these medicinal products typically increase the bleeding risk (see section 4.4).
There is limited experience of co-administration with other platelet aggregation inhibitors (such as GPIIb/IIIa receptor antagonists, dipyridamole, dextran or sulfinpyrazone) or thrombolytic agents. As such agents increase the bleeding risk, co-administration of these medicinal products with apixaban is not recommended (see section 4.4).
Other concomitant therapies
No clinically significant pharmacokinetic or pharmacodynamic interactions were observed when apixaban was coadministered with atenolol or famotidine. Coadministration of apixaban 10 mg with atenolol 100 mg did not have a clinically relevant effect on the pharmacokinetics of apixaban. Following administration of the two medicinal products together, mean apixaban AUC and Cmax were 15% and 18% lower than when administered alone. The administration of apixaban 10 mg with famotidine 40 mg had no effect on apixaban AUC or Cmax.
Effect of apixaban on other medicinal products
In vitro apixaban studies showed no inhibitory effect on the activity of CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2D6 or CYP3A4 (IC50 > 45 |aM) and weak inhibitory effect on the activity of CYP2C19 (IC50 > 20 |aM) at concentrations that are significantly greater than peak plasma concentrations observed in patients. Apixaban did not induce CYP1A2, CYP2B6, CYP3A4/5 at a concentration up to 20 ^M. Therefore, apixaban is not expected to alter the metabolic clearance of coadministered medicinal products that are metabolised by these enzymes. Apixaban is not a significant inhibitor of P-gp.
In studies conducted in healthy subjects, as described below, apixaban did not meaningfully alter the pharmacokinetics of digoxin, naproxen, or atenolol.
Digoxin
Coadministration of apixaban (20 mg once a day) and digoxin (0.25 mg once a day), a P-gp substrate, did not affect digoxin AUC or Cmax. Therefore, apixaban does not inhibit P-gp mediated substrate transport.
Naproxen
Coadministration of single doses of apixaban (10 mg) and naproxen (500 mg), a commonly used NSAID, did not have any effect on the naproxen AUC or Cmax.
Atenolol
Coadministration of a single dose of apixaban (10 mg) and atenolol (100 mg), a common beta-blocker, did not alter the pharmacokinetics of atenolol.
Activated charcoal
Administration of activated charcoal reduces apixaban exposure (see section 4.9).
4.6 Fertility, pregnancy and lactation
Pregnancy
There are no data from the use of apixaban in pregnant women. Animal studies do not indicate direct or indirect harmful effects with respect to reproductive toxicity (see section 5.3). As a precautionary measure, it is preferable to avoid the use of apixaban during pregnancy.
Breast-feeding
It is unknown whether apixaban or its metabolites are excreted in human milk. Available data in animals have shown excretion of apixaban in milk (see section 5.3). A risk to the suckling child cannot be excluded.
A decision must be made to whether discontinue breast-feeding or to discontinue/abstain from apixaban therapy taking into account the benefit of breast-feeding for the child and the benefit of therapy for the woman.
Fertility
Studies in animals dosed with apixaban have shown no effect on fertility (see section 5.3).
4.7 Effects on ability to drive and use machines
Apixaban Accordhas no or negligible influence on the ability to drive and use machines.
4.8 Undesirable effects
Summary of the safety profile
The safety of apixaban has been investigated in 7 Phase III clinical studies including more than 21,000 patients: more than 5,000 patients in VTEp studies, more than 11,000 patients in NVAF studies and more than 4,000 patients in the VTE treatment (VTEt) studies, for an average total exposure of 20 days, 1.7 years and 221 days respectively (see section 5.1).
Common adverse reactions were haemorrhage, contusion, epistaxis, and haematoma (see Table 2 for adverse reaction profile and frequencies by indication).
In the VTEp studies, in total, 11% of the patients treated with apixaban 2.5 mg twice daily experienced adverse reactions. The overall incidence of adverse reactions related to bleeding with apixaban was 10% in the apixaban vs enoxaparin studies.
In the NVAF studies, the overall incidence of adverse reactions related to bleeding with apixaban was 24.3% in the apixaban vs warfarin study and 9.6% in the apixaban vs acetylsalicylic acid study. In the apixaban vs warfarin study the incidence of ISTH major gastrointestinal bleeds (including upper GI, lower GI, and rectal bleeding) with apixaban was 0.76%/year. The incidence of ISTH major intraocular bleeding with apixaban was 0.18%/year.
In the VTEt studies, the overall incidence of adverse reactions related to bleeding with apixaban was 15.6% in the apixaban vs enoxaparin/warfarin study and 13.3% in the apixaban vs placebo study (see section 5.1).
Tabulated list of adverse reactions
Table 2 shows the adverse reactions ranked under headings of system organ class and frequency using the following convention: very common (> 1/10); common (> 1/100 to < 1/10); uncommon (> 1/1,000 to < 1/100); rare (> 1/10,000 to < 1/1,000); very rare (< 1/10,000); not known (cannot be estimated from the available data) for VTEp, NVAF, and VTEt respectively.
Table 2: Tabulated adverse reactions
System organ class | Prevention of VTE in adult patients who have undergone elective hip or knee replacement surgery (VTEp) | Prevention of stroke and systemic embolism in adult patients with NVAF, with one or more risk factors (NVAF) | Treatment of DVT and PE, and prevention of recurrent DVT and PE (VTEt) |
Blood and lymphatic system disorders | |||
Anaemia | Common | Common | Common |
Thrombocytopenia | Uncommon | Uncommon | Common |
Immune system disorders | |||
Hypersensitivity, allergic oedema and anaphylaxis | Rare | Uncommon | Uncommon |
Pruritus | Uncommon | Uncommon | Uncommon* |
Angioedema | Not known | Not known | Not known |
Nervous system disorders | |||
Brain haemorrhage^ | Not known | Uncommon | Rare |
System organ class | Prevention of VTE in adult patients who have undergone elective hip or knee replacement surgery (VTEp) | Prevention of stroke and systemic embolism in adult patients with NVAF, with one or more risk factors (NVAF) | Treatment of DVT and PE, and prevention of recurrent DVT and PE (VTEt) |
Eye disorders | |||
Eye haemorrhage (including conjunctival haemorrhage) | Rare | Common | Uncommon |
Vascular disorders | |||
Haemorrhage, haematoma | Common | Common | Common |
Hypotension (including procedural hypotension) | Uncommon | Common | Uncommon |
Intra-abdominal haemorrhage | Not known | Uncommon | Not known |
Respiratory, thoracic and mediastinal disorders | |||
Epistaxis | Uncommon | Common | Common |
Haemoptysis | Rare | Uncommon | Uncommon |
Respiratory tract haemorrhage | Not known | Rare | Rare |
Gastrointestinal disorders | |||
Nausea | Common | Common | Common |
Gastrointestinal haemorrhage | Uncommon | Common | Common |
Haemorrhoidal haemorrhage | Not known | Uncommon | Uncommon |
Mouth haemorrhage | Not known | Uncommon | Common |
Haematochezia | Uncommon | Uncommon | Uncommon |
Rectal haemorrhage, gingival bleeding | Rare | Common | Common |
Retroperitoneal haemorrhage | Not known | Rare | Not known |
Hepatobiliary disorders | |||
Liver function test abnormal, asparate aminotransferase increased, blood alkaline phosphatase increased, blood bilirubin increased | Uncommon | Uncommon | Uncommon |
Gamma-glutamyltransferase increased | Uncommon | Common | Common |
Alanine aminotransferase increased | Uncommon | Uncommon | Common |
Skin and subcutaneous tissue disorders | |||
Skin rash | Not known | Uncommon | Common |
Alopecia | Rare | Uncommon | Uncommon |
Erythema multiforme | Not known | Very rare | Not known |
Musculoskeletal and connective tissue disorders | |||
Muscle haemorrhage | Rare | Rare | Uncommon |
Renal and urinary disorders | |||
Haematuria | Uncommon | Common | Common |
Reproductive system and breast disorders | |||
Abnormal vaginal haemorrhage, urogenital haemorrhage | Uncommon | Uncommon | Common |
General disorders and administration site conditions | |||
Application site bleeding | Not known | Uncommon | Uncommon |
Investigations |
System organ class | Prevention of VTE in adult patients who have undergone elective hip or knee replacement surgery (VTEp) | Prevention of stroke and systemic embolism in adult patients with NVAF, with one or more risk factors (NVAF) | Treatment of DVT and PE, and prevention of recurrent DVT and PE (VTEt) |
Occult blood positive | Not known | Uncommon | Uncommon |
Injury, poisoning and procedural complications | |||
Contusion | Common | Common | Common |
Post procedural haemorrhage (including post procedural haematoma, wound haemorrhage, vessel puncture site haematoma and catheter site haemorrhage), wound secretion, incision site haemorrhage (including incision site haematoma), operative haemorrhage | Uncommon | Uncommon | Uncommon |
Traumatic haemorrhage | Not known | Uncommon | Uncommon |
* There were no occurrences of generalised pruritus in CV185057 (long term prevention of VTE)
t
The term “Brain haemorrhage” encompasses all intracranial or intraspinal haemorrhages (ie., haemorrhagic stroke or putamen, cerebellar, intraventricular, or subdural haemorrhages).
The use of apixaban may be associated with an increased risk of occult or overt bleeding from any tissue or organ, which may result in posthaemorrhagic anaemia. The signs, symptoms, and severity will vary according to the location and degree or extent of the bleeding (see sections 4.4 and 5.1).
Reporting of suspected adverse reactions
Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.
4.9 Overdose
Overdose of apixaban may result in a higher risk of bleeding. In the event of haemorrhagic complications, treatment must be discontinued and the source of bleeding investigated. The initiation of appropriate treatment, e.g., surgical haemostasis, the transfusion of fresh frozen plasma or the administration of a reversal agent for factor Xa inhibitors should be considered.
In controlled clinical studies, orally-administered apixaban in healthy subjects at doses up to 50 mg daily for 3 to 7 days (25 mg twice daily (bid) for 7 days or 50 mg once daily (od) for 3 days) had no clinically relevant adverse reactions.
In healthy subjects, administration of activated charcoal 2 and 6 hours after ingestion of a 20 mg dose of apixaban reduced mean apixaban AUC by 50% and 27%, respectively, and had no impact on Cmax. Mean half-life of apixaban decreased from 13.4 hours when apixaban was administered alone to 5.3 hours and 4.9 hours, respectively, when activated charcoal was administered 2 and 6 hours after apixaban. Thus, administration of activated charcoal may be useful in the management of apixaban overdose or accidental ingestion.
For situations when reversal of anticoagulation is needed due to life-threatening or uncontrolled bleeding, a reversal agent for factor Xa inhibitors is available (see section 4.4). Administration of prothrombin complex concentrates (PCCs) or recombinant factor VIIa may also be considered.
Reversal of apixaban pharmacodynamic effects, as demonstrated by changes in the thrombin generation assay, was evident at the end of infusion and reached baseline values within 4 hours after the start of a 4-factor PCC 30 minute infusion in healthy subjects. However, there is no clinical experience with the use of 4-factor PCC products to reverse bleeding in individuals who have received apixaban. Currently there is no experience with the use of recombinant factor VIIa in individuals receiving apixaban. Re-dosing of recombinant factor VIIa could be considered and titrated depending on improvement of bleeding.
Depending on local availability, a consultation of a coagulation expert should be considered in case of major bleedings.
Haemodialysis decreased apixaban AUC by 14% in subjects with end-stage renal disease (ESRD), when a single dose of apixaban 5 mg was administered orally. Therefore, haemodialysis is unlikely to be an effective means of managing apixaban overdose.
5. PHARMACOLOGICAL PROPERTIES
5.1 Pharmacodynamic properties
Pharmacotherapeutic group: Antithrombotic agents, direct factor Xa inhibitors, ATC code: B01AF02
Mechanism of action
Apixaban is a potent, oral, reversible, direct and highly selective active site inhibitor of factor Xa. It does not require antithrombin III for antithrombotic activity. Apixaban inhibits free and clot-bound factor Xa, and prothrombinase activity. Apixaban has no direct effects on platelet aggregation, but indirectly inhibits platelet aggregation induced by thrombin. By inhibiting factor Xa, apixaban prevents thrombin generation and thrombus development. Preclinical studies of apixaban in animal models have demonstrated antithrombotic efficacy in the prevention of arterial and venous thrombosis at doses that preserved haemostasis.
Pharmacodynamic effects
The pharmacodynamic effects of apixaban are reflective of the mechanism of action (FXa inhibition). As a result of FXa inhibition, apixaban prolongs clotting tests such as prothrombin time (PT), INR and activated partial thromboplastin time (aPTT). Changes observed in these clotting tests at the expected therapeutic dose are small and subject to a high degree of variability. They are not recommended to assess the pharmacodynamic effects of apixaban. In the thrombin generation assay, apixaban reduced endogenous thrombin potential, a measure of thrombin generation in human plasma.
Apixaban also demonstrates anti-FXa activity as evident by reduction in Factor Xa enzyme activity in multiple commercial anti-FXa kits, however results differ across kits. Data from clinical trials are only available for the Rotachrom®Heparin chromogenic assay. Anti-FXa activity exhibits a close direct linear relationship with apixaban plasma concentration, reaching maximum values at the time of apixaban peak plasma concentrations. The relationship between apixaban plasma concentration and anti-FXa activity is approximately linear over a wide dose range of apixaban.
Table 3 below shows the predicted steady state exposure and anti-Factor Xa activity for each indication. In patients taking apixaban for the prevention of VTE following hip or knee replacement surgery, the results demonstrate a less than 1.6-fold fluctuation in peak-to-trough levels. In non-valvular atrial fibrillation patients taking apixaban for the prevention of stroke and systemic embolism, the results demonstrate a less than 1.7-fold fluctuation in peak-to-trough levels. In patients taking apixaban for the treatment of DVT and PE or prevention of recurrent DVT and PE, the results demonstrate a less than 2.2-fold fluctuation in peak-to-trough levels.
Table 3: Predicted apixaban steady-state exposure and anti-Factor Xa activity | ||||
Apix. C max (ng/mL) | Apix. C min (ng/mL) | Apix. anti-Factor Xa activity max (IU/mL) | Apix. anti-Factor Xa activity min (IU/mL) | |
Median [5th, 95th Percentile] | ||||
Prevention of VTE: elective hip or knee replacement surgery | ||||
2.5 mg twice daily | 77 [41, 146] | 51 [23, 109] | 1.3 [0.67, 2.4] | 0.84 [0.37, 1.8] |
Prevention of stroke and systemic embolism: NVAF | ||||
2.5 mg twice daily* | 123 [69, 221] | 79 [34, 162] | 1.8 [1.0, 3.3] | 1.2 [0.51, 2.4] |
5 mg twice daily | 171 [91, 321] | 103 [41, 230] | 2.6 [1.4, 4.8] | 1.5 [0.61, 3.4] |
Treatment of DVT, treatment of PE and prevention of recurrent DVT and PE (VTEt) | ||||
2.5 mg twice daily | 67 [30, 153] | 32 [11, 90] | 1.0 [0.46, 2.5] | 0.49 [0.17, 1.4] |
5 mg twice daily | 132 [59, 302] | 63 [22, 177] | 2.1 [0.91, 5.2] | 1.0 [0.33, 2.9] |
10 mg twice daily | 251 [111, 572] | 120 [41, 335] | 4.2 [1.8, 10.8] | 1.9 [0.64, 5.8] |
* Dose adjusted population based on 2 of 3 dose reduction criteria in the ARISTOTLE study.
Although treatment with apixaban does not require routine monitoring of exposure, a calibrated quantitative anti-Factor Xa assay may be useful in exceptional situations where knowledge of apixaban exposure may help to inform clinical decisions, e.g., overdose and emergency surgery.
Clinical efficacy and safety
Prevention of VTE (VTEp): elective hip or knee replacement surgery
The apixaban clinical program was designed to demonstrate the efficacy and safety of apixaban for the prevention of VTE in a broad range of adult patients undergoing elective hip or knee replacement. A total of 8,464 patients were randomised in two pivotal, double-blind, multi-national studies, comparing apixaban 2.5 mg given orally twice daily (4,236 patients) or enoxaparin 40 mg once daily (4,228 patients). Included in this total were 1,262 patients (618 in the apixaban group) of age 75 or older, 1,004 patients (499 in the apixaban group) with low body weight (< 60 kg), 1,495 patients (743 in the apixaban group) with BMI > 33 kg/m2, and 415 patients (203 in the apixaban group) with moderate renal impairment.
The ADVANCE-3 study included 5,407 patients undergoing elective hip replacement, and the ADVANCE-2 study included 3,057 patients undergoing elective knee replacement. Subjects received either apixaban 2.5 mg given orally twice daily (po bid) or enoxaparin 40 mg administered subcutaneously once daily (sc od). The first dose of apixaban was given 12 to 24 hours post-surgery, whereas enoxaparin was started 9 to 15 hours prior to surgery. Both apixaban and enoxaparin were given for 32–38 days in the ADVANCE-3 study and for 10–14 days in the ADVANCE-2 study.
Based on patient medical history in the studied population of ADVANCE-3 and ADVANCE-2 (8,464 patients), 46% had hypertension, 10% had hyperlipidemia, 9% had diabetes, and 8% had coronary artery disease.
Apixaban demonstrated a statistically superior reduction in the primary endpoint, a composite of all VTE/all cause death, and in the Major VTE endpoint, a composite of proximal DVT, non-fatal PE, and VTE-related death, compared to enoxaparin in both elective hip or knee replacement surgery (see Table 4).
Table 4: Efficacy results from pivotal phase III studies
Study | ADVANCE-3 (hip) | ADVANCE-2 (knee) | ||||
Study treatment Dose Duration of treatment | Apixaban 2.5 mg po twice daily 35 ± 3 d | Enoxaparin 40 mg sc once daily 35 ± 3 d | p-value | Apixaban 2.5 mg po twice daily 12 ± 2 d | Enoxaparin 40 mg sc once daily 12 ± 2 d | p-value |
Total VTE/all-cause death | ||||||
Number of events/subjects Event rate | 27/1,949 1.39% | 74/1,917 3.86% | < 0.000 1 | 147/976 15.06% | 243/997 24.37% | <0.0001 |
Relative risk 95% CI | 0.36 (0.22, 0.54) | 0.62 (0.51, 0.74) | ||||
Major VTE | ||||||
Number of events/subjects Event rate | 10/2,199 0.45% | 25/2,195 1.14% | 0.0107 | 13/1,195 1.09% | 26/1,199 2.17% | 0.0373 |
Relative risk 95% CI | 0.40 (0.15, 0.80) | 0.50 (0.26, 0.97) |
The safety endpoints of major bleeding, the composite of major and clinically relevant non-major (CRNM) bleeding, and all bleeding showed similar rates for patients treated with apixaban 2.5 mg compared with enoxaparin 40 mg (see Table 5). All the bleeding criteria included surgical site bleeding.
Table 5: Bleeding results frompivotal phase III studies*
ADVANCE-3 | ADVANCE-2 | |||
Apixaban 2.5 mg po twice daily 35 ± 3 d | Enoxaparin 40 mg sc once daily 35 ± 3 d | Apixaban 2.5 mg po twice daily 12 ± 2 d | Enoxaparin 40 mg sc once daily 12 ± 2 d | |
All treated | n = 2,673 | n = 2,659 | n = 1,501 | n = 1,508 |
Treatment Period 1 | ||||
Major | 22 (0.8%) | 18 (0.7%) | 9 (0.6%) | 14 (0.9%) |
Fatal | 0 | 0 | 0 | 0 |
Major + CRNM | 129 (4.8%) | 134 (5.0%) | 53 (3.5%) | 72 (4.8%) |
All | 313 (11.7%) | 334 (12.6%) | 104 (6.9%) | 126 (8.4%) |
Post-surgery treatment period 2 | ||||
Major | 9 (0.3%) | 11 (0.4%) | 4 (0.3%) | 9 (0.6%) |
Fatal | 0 | 0 | 0 | 0 |
Major + CRNM | 96 (3.6%) | 115 (4.3%) | 41 (2.7%) | 56 (3.7%) |
All | 261 (9.8%) | 293 (11.0%) | 89 (5.9%) | 103 (6.8%) |
* All the bleeding criteria included surgical site bleeding
1 Includes events occurring after first dose of enoxaparin (pre-surgery)
2 Includes events occurring after first dose of apixaban (post-surgery)
The overall incidences of adverse reactions of bleeding, anaemia and abnormalities of transaminases (e.g., ALT levels) were numerically lower in patients on apixaban compared to enoxaparin in the phase II and phase III studies in elective hip and knee replacement surgery.
In the knee replacement surgery study during the intended treatment period, in the apixaban arm
4 cases of PE were diagnosed against no cases in the enoxaparin arm. No explanation can be given to this higher number of PE.
Prevention of stroke and systemic embolism in patients with non-valvular atrial fibrillation (NVAF) A total of 23,799 patients were randomised in the clinical program (ARISTOTLE: apixaban versus warfarin, AVERROES: apixaban versus ASA) including 11,927 randomised to apixaban. The program was designed to demonstrate the efficacy and safety of apixaban for the prevention of stroke and systemic embolism in patients with non-valvular atrial fibrillation (NVAF) and one or more additional risk factors, such as:
- • prior stroke or transient ischaemic attack (TIA)
- • age > 75 years
- • hypertension
- • diabetes mellitus
- • symptomatic heart failure (NYHA Class > II)
5.2 Pharmacokinetic properties
Absorption
The absolute bioavailability of apixaban is approximately 50% for doses up to 10 mg. Apixaban is rapidly absorbed with maximum concentrations (Cmax) appearing 3 to 4 hours after tablet intake. Intake with food does not affect apixaban AUC or Cmax at the 10 mg dose. Apixaban can be taken with or without food.
Apixaban demonstrates linear pharmacokinetics with dose proportional increases in exposure for oral doses up to 10 mg. At doses > 25 mg apixaban displays dissolution limited absorption with decreased bioavailability. Apixaban exposure parameters exhibit low to moderate variability reflected by a within-subject and inter-subject variability of ~20% CV and ~30% CV, respectively.
Following oral administration of 10 mg of apixaban as 2 crushed 5 mg tablets suspended in 30 mL of water, exposure was comparable to exposure after oral administration of 2 whole 5 mg tablets.
Following oral administration of 10 mg of apixaban as 2 crushed 5 mg tablets with 30 g of apple puree, the Cmax and AUC were 21% and 16% lower, respectively, when compared to administration of 2 whole 5 mg tablets. The reduction in exposure is not considered clinically relevant.
Following administration of a crushed 5 mg apixaban tablet suspended in 60 mL of G5W and delivered via a nasogastric tube, exposure was similar to exposure seen in other clinical trials involving healthy subjects receiving a single oral 5 mg apixaban tablet dose.
Given the predictable, dose-proportional pharmacokinetic profile of apixaban, the bioavailability results from the conducted studies are applicable to lower apixaban doses.
Distribution
Plasma protein binding in humans is approximately 87%. The volume of distribution (Vss) is approximately 21 litres.
Biotransformation and elimination
Apixaban has multiple routes of elimination. Of the administered apixaban dose in humans, approximately 25% was recovered as metabolites, with the majority recovered in faeces. Renal excretion of apixaban accounts for approximately 27% of total clearance. Additional contributions from biliary and direct intestinal excretion were observed in clinical and nonclinical studies, respectively.
Apixaban has a total clearance of about 3.3 L/h and a half-life of approximately 12 hours.
O-demethylation and hydroxylation at the 3-oxopiperidinyl moiety are the major sites of biotransformation. Apixaban is metabolised mainly via CYP3A4/5 with minor contributions from CYP1A2, 2C8, 2C9, 2C19, and 2J2. Unchanged apixaban is the major active substance-related component in human plasma with no active circulating metabolites present. Apixaban is a substrate of transport proteins, P-gp and breast cancer resistance protein (BCRP).
Elderly
Elderly patients (above 65 years) exhibited higher plasma concentrations than younger patients, with mean AUC values being approximately 32% higher and no difference in Cmax.
Renal impairment
There was no impact of impaired renal function on peak concentration of apixaban. There was an increase in apixaban exposure correlated to decrease in renal function, as assessed via measured creatinine clearance. In individuals with mild (creatinine clearance 51–80 mL/min), moderate (creatinine clearance 30–50 mL/min) and severe (creatinine clearance 15–29 mL/min) renal impairment, apixaban plasma concentrations (AUC) were increased 16, 29, and 44% respectively, compared to individuals with normal creatinine clearance. Renal impairment had no evident effect on the relationship between apixaban plasma concentration and anti-FXa activity.
In subjects with end-stage renal disease (ESRD), the AUC of apixaban was increased by 36% when a single dose of apixaban 5 mg was administered immediately after haemodialysis, compared to that seen in subjects with normal renal function. Haemodialysis, started two hours after administration of a single dose of apixaban 5 mg, decreased apixaban AUC by 14% in these ESRD subjects, corresponding to an apixaban dialysis clearance of 18 mL/min. Therefore, haemodialysis is unlikely to be an effective means of managing apixaban overdose.
Hepatic impairment
In a study comparing 8 subjects with mild hepatic impairment, Child-Pugh A score 5 (n = 6) and score 6 (n = 2), and 8 subjects with moderate hepatic impairment, Child-Pugh B score 7 (n = 6) and score 8 (n = 2), to 16 healthy control subjects, the single-dose pharmacokinetics and pharmacodynamics of apixaban 5 mg were not altered in subjects with hepatic impairment. Changes in anti-Factor Xa activity and INR were comparable between subjects with mild to moderate hepatic impairment and healthy subjects.
Gender
Exposure to apixaban was approximately 18% higher in females than in males.
Ethnic origin and race
The results across phase I studies showed no discernible difference in apixaban pharmacokinetics between White/Caucasian, Asian and Black/African American subjects. Findings from a population pharmacokinetic analysis in patients who received apixaban were generally consistent with the phase I results.
Body weight
Compared to apixaban exposure in subjects with body weight of 65 to 85 kg, body weight > 120 kg was associated with approximately 30% lower exposure and body weight < 50 kg was associated with approximately 30% higher exposure.
Pharmacokinetic/pharmacodynamics relationship
The pharmacokinetic /pharmacodynamic (PK/PD) relationship between apixaban plasma concentration and several PD endpoints (anti-FXa activity, INR, PT, aPTT) has been evaluated after administration of a wide range of doses (0.5 – 50 mg). The relationship between apixaban plasma concentration and anti-Factor Xa activity was best described by a linear model. The PK/PD relationship observed in patients was consistent with that established in healthy subjects.
5.3 Preclinical safety data
Preclinical data reveal no special hazard for humans based on conventional studies of safety pharmacology, repeated dose toxicity, genotoxicity, carcinogenic potential, fertility and embryo-foetal development and juvenile toxicity.
The major observed effects in the repeated dose toxicity studies were those related to the pharmacodynamic action of apixaban on blood coagulation parameters. In the toxicity studies little to no increase of bleeding tendency was found. However, since this may be due to a lower sensitivity of the non-clinical species compared to humans, this result should be interpreted with caution when extrapolating to humans.
In rat milk, a high milk to maternal plasma ratio (Cmax about 8, AUC about 30) was found, possibly due to active transport into the milk.
6. PHARMACEUTICAL PARTICULARS6.1 List of excipients
Tablet core:
Lactose
Cellulose, microcrystalline
Croscarmellose sodium
Sodium laurilsulfate
Magnesium stearate
Film coat:
Hypromellose
Lactose monohydrate
Titanium dioxide (E171)
Triacetin
Iron oxide yellow (E172)
6.2 Incompatibilities
Not applicable
6.3 Shelf life
3 years
6.4 Special precautions for storage
This medicinal product does not require any special storage condition.
6.5 Nature and contents of container
PVC/PVdC-Aluminium blisters are available in 10, 14, 20, 28, 56, 60, 100, 112, 168, and 200 film-coated tablets.
PVC/PVdC-Aluminium blisters are available in perforated unit dose blisters of 10 × 1, 20 × 1, 28 × 1, 56 × 1, 60 × 1, 100 × 1 and 168 × 1 film-coated tablet.
HDPE bottle with polypropylene child resistant/continues threaded closure containing 60, 100, 168, 180, 200 and 1,000 film-coated tablets.
Not all pack sizes may be marketed.
6.6 Special precautions for disposal
No special requirements.
Any unused medicinal product or waste material should be disposed of in accordance with local requirements.
7. MARKETING AUTHORISATION HOLDER
Accord Healthcare S.L.U.
World Trade Center, Moll de Barcelona s/n,
Edifici Est, 6aPlanta,
Barcelona, 08039
Spain
8. MARKETING AUTHORISATION NUMBER(S)
EU/1/20/1458/001
EU/1/20/1458/003
EU/1/20/1458/004
EU/1/20/1458/006
EU/1/20/1458/008
EU/1/20/1458/010
EU/1/20/1458/012
EU/1/20/1458/014
EU/1/20/1458/041
EU/1/20/1458/043
EU/1/20/1458/002
EU/1/20/1458/005
EU/1/20/1458/007
EU/1/20/1458/009
EU/1/20/1458/011
EU/1/20/1458/013
EU/1/20/1458/042
EU/1/20/1458/015
EU/1/20/1458/016
EU/1/20/1458/017
EU/1/20/1458/018
EU/1/20/1458/019
EU/1/20/1458/020
9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION
Date of first authorisation: 23 July 2020