Patient info Open main menu

ONDANSETRON 2 MG|ML SOLUTION FOR INJECTION - summary of medicine characteristics

Dostupné balení:

Summary of medicine characteristics - ONDANSETRON 2 MG|ML SOLUTION FOR INJECTION

SUMMARY OF PRODUCT CHARACTERISTICS

1 NAME OF THE MEDICINAL PRODUCT

Ondansetron 2 mg/ml solution for injection

2 QUALITATIVE AND QUANTITATIVE COMPOSITION

Each ml solution for injection contains 2 mg of ondansetron (as hydrochloride dihydrate).

Each 2 ml ampoule contains 4 mg of ondansetron (as hydrochloride dihydrate).

Each 4 ml ampoule contains 8 mg of ondansetron (as hydrochloride dihydrate).

Excipient with known effect

Each ml solution for injection contains 3.6 mg of sodium.

For the full list of excipients, see section 6.1

3 PHARMACEUTICAL FORM

Solution for injection.

Colourless and clear liquid, practically odourless, free of particles.

4 CLINICAL PARTICULARS

4.1 Therapeutic indications

Ondansetron is indicated for the management of nausea and vomiting induced by cytotoxic chemotherapy and radiotherapy.

Ondansetron is indicated for the prevention and treatment of post-operative nausea and vomiting (PONV).

Paediatric population

Ondansetron is indicated for the management of chemotherapy-induced nausea and vomiting (CINV) in children aged >6 months, and for the

prevention and treatment of PONV in children aged >1 month.

4.2 Posology and method of administration

For intravenous injection or for intravenous infusion after dilution.

For instructions on dilution of the product before administration, see section 6.6.

Posology

Chemotherapy and Radiotherapy

The emetogenic potential of cancer treatment varies according to the doses and combinations of chemotherapy and radiotherapy regimens used. The route of administration and dose of ondansetron should be flexible in the range of 8–32 mg a day and selected as shown below.

Adults

Emetogenic chemotherapy and radiotherapy

Ondansetron can be given either by rectal, oral (tablets or syrup), intravenous or intramuscular administration.

For most patients receiving emetogenic chemotherapy or radiotherapy, ondansetron 8 mg should be administered as a slow intravenous injection (in not less than 30 seconds) or intramuscular injection, or as a short-time intravenous infusion over 15 minutes immediately before treatment, followed by 8 mg orally twelve hourly.

To protect against delayed or prolonged emesis after the first 24 hours, oral or rectal treatment with Ondansetron should be continued for up to 5 days after a course of treatment.

For oral or rectal administration refer to the SmPC of ondansetron tablets and suppositories, respectively.

Highly emetogenic chemotherapy:

For patients receiving highly emetogenic chemotherapy, e.g. high-dose cisplatin, ondansetron can be given either by oral, rectal, intravenous or intramuscular administration. Ondansetron has been shown to be equally effective in the following dose schedules over the first 24 hours of chemotherapy:

A single dose of 8 mg by slow intravenous injection (in not less than 30 seconds) or intramuscular injection immediately before chemotherapy.

A dose of 8 mg by slow intravenous injection (in not less than 30 seconds), intramuscular injection or as a short-time intravenous infusion over 15 minutes immediately before chemotherapy, followed by two further intravenous injection (in not less than 30 seconds) or intramuscular doses of 8 mg four hours apart, or by a constant infusion of 1 mg/hour for up to 24 hours.

A maximum initial intravenous dose of 16 mg diluted in 50–100ml of sodium chloride 9 mg/ml (0.9% w/v) solution saline or other compatible infusion fluid (see compatibility with solutions for infusion under section 6.6) and infused over not less than 15 minutes immediately before chemotherapy. The initial dose of Ondansetron may be followed by two additional 8 mg intravenous doses (in not less than 30 seconds) or intramuscular doses four hours apart.

A single dose greater than 16 mg must not be given due to dose dependent increase of QT-prolongation risk (see section 4.4, 4,8 and 5.1).

Doses of greater than 8 mg and up to 32 mg of ondansetron may only be given by intravenous infusion over not less than 15 minutes.

The selection of dose regimen should be determined by the severity of the emetogenic challenge.

The efficacy of ondansetron in highly emetogenic chemotherapy may be enhanced by the addition of a single intravenous dose of dexamethasone sodium phosphate, 20 mg administered prior to chemotherapy.

To protect against delayed or prolonged emesis after the first 24 hours, oral or rectal treatment with ondansetron should be continued for up to 5 days after a course of treatment.

Paediatric population

CINV in children aged > 6 months and adolescents

The dose for CINV can be calculated based on body surface area (BSA) or weight – see below. Weight-based dosing results in higher total daily doses compared to BSA-based dosing (sections 4.4.and 5.1).

Ondansetron injection should be diluted in 5% dextrose or 0.9% sodium chloride or other compatible infusion fluid (see section 6.6) and infused intravenously over not less than 15 minutes.

There are no data from controlled clinical trials on the use of ondansetron in the prevention of delayed or prolonged CINV. There are no data from controlled clinical trials on the use of ondansetron for radiotherapy-induced nausea and vomiting in children.

Dosing by BSA:

Ondansetron should be administered immediately before chemotherapy as a single intravenous dose of 5 mg/m2. The single intravenous dose must not

exceed 8 mg.

Oral dosing can commence twelve hours later and may be continued for up to 5 days (Table 1).

The total dose over 24 hours (given as divided doses) must not exceed adult dose of 32 mg.

Table 1: BSA-based dosing for Chemotherapy – Children aged >6 months and adolescents

BSA

Day 1 (a,b)

Days 2–6(b)

< 0.6 m2

5 mg/m2 i.v. plus 2 mg syrup after 12 hrs

2 mg syrup every 12 hrs

> 0.6 m2

5 mg/m2 i.v. plus

4 mg syrup or tablet after 12 hrs

4 mg syrup or tablet every 12 hrs

a The intravenous dose must not exceed 8mg.

b The total dose over 24 hours must not exceed adult dose of 32 mg

Dosing by bodyweight:

Weight-based dosing results in higher total daily doses compared to BSA-based dosing (sections 4.4. and 5.1).

Ondansetron should be administered immediately before chemotherapy as a single intravenous dose of 0.15 mg/kg. The single intravenous dose must not exceed 8 mg.

Two further intravenous doses may be given in 4-hourly intervals.

Oral dosing can commence twelve hours later and may be continued for up to 5 days (Table 2).

The total dose over 24 hours (given as divided doses) must not exceed adult dose of 32 mg.

Table 2: Weight-based dosing for Chemotherapy – Children aged >6 months and adolescents

Weight Day 1 (a,b)

Days 2–6(b)

< 10 kg

Up to 3 doses of 0.15 mg/kg every 4 hrs

2 mg syrup every 12 hrs

> 10 kg

Up to 3 doses of 0.15 mg/kg every 4 hrs

4 mg syrup or tablet every 12 hrs

a The intravenous dose must not exceed 8mg.

b The total dose over 24 hours must not exceed adult dose of 32 mg.

Elderly

In patients 65 to 74 years of age, the dose schedule for adults can be followed. All intravenous doses should be diluted in 50–100 ml of saline or other compatible infusion fluid (see section 6.6) and infused over 15 minutes.

In patients 75 years of age or older, the initial intravenous dose of Ondansetron should not exceed 8 mg. All intravenous doses should be diluted in 50–100 ml of saline or other compatible infusion fluid (see section 6.6) and infused over 15 minutes. The initial dose of 8 mg may be followed by two further intravenous doses of 8 mg, infused over 15 minutes and given no less than four hours apart. (see section 5.2)

Renal impairment

No alteration of daily dosage or frequency of dosing, or route of administration are required.

Hepatic impairment

Clearance of ondansetron is significantly reduced and serum half-life significantly prolonged in subjects with moderate or severe impairment of hepatic function. In such patients a total daily dose of 8mg should not be exceeded and therefore parenteral or oral administration is recommended.

Prescribers intending to use ondansetron in the prevention of delayed nausea and vomiting associated with chemotherapy or radiotherapy in adults, adolescents or children should take into consideration current practice and appropriate guidelines.

Post-operative nausea and vomiting (PONV):

Adults

For the prevention of PONV ondansetron can be administered orally or by intravenous or intramuscular injection.

Ondansetron may be administered as a single dose of 4 mg given by intramuscular or slow intravenous injection at induction of anaesthesia. For oral administration refer to the SmPC of ondansetron tablets.

For treatment of established PONV a single dose of 4 mg given by intramuscular or slow intravenous injection is recommended.

Paediatric population

PONV in children aged > 1 month and adolescents

For prevention of PONV in paediatric patients having surgery performed under general anaesthesia, a single dose of ondansetron may be administered by slow intravenous injection (not less than 30 seconds) at a dose of 0.1 mg/kg up to a maximum of 4 mg either prior to, at or after induction of anaesthesia.

For the treatment of PONV after surgery in paediatric patients having surgery performed under general anaesthesia, a single dose of ondansetron may be administered by slow intravenous injection (not less than 30 seconds) at a dose of 0.1 mg/kg up to a maximum of 4 mg.

There are no data on the use of ondansetron in the treatment of PONV in children below 2 years of age.

Elderly

There is limited experience in the use of ondansetron in the prevention and treatment of PONV in the elderly; however ondansetron is well tolerated in patients over 65 years receiving chemotherapy.

Renal impairment

No alteration of daily dosage or frequency of dosing, or route of administration are required.

Hepatic impairment

Clearance of ondansetron is significantly reduced and serum half-life significantly prolonged in subjects with moderate or severe impairment of hepatic function. In such patients a total daily dose of 8 mg should not be exceeded and therefore parenteral or oral administration is recommended.

Patients with poor sparteine/debri­soquine metabolism

The elimination half-life of ondansetron is not altered in subjects classified as poor metabolisers of sparteine and debrisoquine. Consequently in such patients repeat dosing will give drug exposure levels no different from those of the general population. No alteration of daily dosage or frequency of dosing are required.

4.3 Contraindications

Based on reports of profound hypotension and loss of consciousness when ondansetron was administered with apomorphine hydrochloride, concomitant use with apomorphine is contraindicated (see section 4.5).

Hypersensitivity to the active substance or to other selective 5-HT3-receptor antagonists (e.g. granisetron, dolasetron) or to any of the excipients listed in section 6.1.

4.4 Special warnings and precautions for use

Hypersensitivity reactions have been reported in patients who have exhibited hypersensitivity to other selective 5HT3 receptor antagonists.

Respiratory events should be treated symptomatically and clinicians should pay particular attention to them as precursors of hypersensitivity reactions.

Ondansetron prolongs the QT interval in a dose-dependent manner (see section 5.1). In addition, post-marketing cases of Torsade de Pointes have been reported in patients using ondansetron. Avoid ondansetron in patients with congenital long QT syndrome. Ondansetron should be administered with caution to patients who have or may develop prolongation of QTc, including patients with electrolyte abnormalities, congestive heart failure, bradyarrhythmias or patients taking other medicinal products that lead to QT prolongation or electrolyte abnormalities.

Hypokalaemia and hypomagnesaemia should be corrected prior to ondansetron administration.

There have been post-marketing reports describing patients with serotonin syndrome (including altered mental status, autonomic instability and neuromuscular abnormalities) following the concomitant use of ondansetron and other serotonergic drugs (including selective serotonin reuptake inhibitors (SSRI) and serotonin noradrenaline reuptake inhibitors (SNRIs)). If concomitant treatment with ondansetron and other serotonergic drugs is clinically warranted, appropriate observation of the patient is advised.

As ondansetron is known to increase large bowel transit time, patients with signs of sub-acute intestinal obstruction should be monitored following administration.

In patients with adenotonsillar surgery prevention of nausea and vomiting with ondansetron may mask occult bleeding. Therefore, such patients should be followed carefully after ondansetron.

Paediatric population

Paediatric patients receiving ondansetron with hepatotoxic chemotherapeutic agents should be monitored closely for impaired hepatic function.

CINV

When calculating the dose on an mg/kg basis and administering three doses at 4 hourly intervals, the total daily dose will be higher than if one single dose of 5mg/m2 followed by an oral dose is given. The comparative efficacy of these two different dosing regimens has not been investigated in clinical trials. Cross-trial comparison indicates similar efficacy for both regimens (see section 5.1).

Ondansetron contains sodium

2 ml ampoule:

This medicinal product contains 7.2 mg sodium per ampoule, equivalent to 0.36% of the WHO recommended maximum daily intake of 2 g sodium for an adult.

4 ml ampoule:

This medicinal product contains 14.4 mg sodium per ampoule, equivalent to 0.72% of the WHO recommended maximum daily intake of 2 g sodium for an adult.

4.5 Interaction with other medicinal products and other forms of interaction

Effects of ondansetron on other medicinal products

There is no evidence that ondansetron either induces or inhibits the metabolism of other drugs commonly co-administered with it. Specific studies have shown that there are no pharmacokinetic interactions when ondansetron is administered with alcohol, temazepam, furosemide, alfentanil, tramadol, morphine, lignocaine, thiopental, or propofol.

Effects of other medicinal products on ondansetron

Ondansetron is metabolised by multiple hepatic cytochrome P-450 enzymes: CYP3A4, CYP2D6 and CYP1A2. Due to the multiplicity of metabolic enzymes capable of metabolising ondansetron, enzyme inhibition or reduced activity of one enzyme (e.g. CYP2D6 genetic deficiency) is normally compensated by other enzymes and should result in little or no significant change in overall ondansetron clearance or dose requirement.

Caution should be exercised when ondansetron is coadministered with drugs that prolong the QT interval and/or cause electrolyte abnormalities (see section 4.4).

Use of ondansetron with QT prolonging drugs may result in additional QT prolongation. Concomitant use of ondansetron with cardiotoxic drugs (e.g. anthracyclines such as doxorubicin, daunorubicin or trastuzimab), antibiotics (such as erythromycin or ketoconazole), antiarrhythmics (such as amiodarone) and beta blockers (such as atenolol or timolol) may increase the risk of arrhythmias. (See Special warnings and precautions for use).

There have been post-marketing reports describing patients with serotonin syndrome (including altered mental status, autonomic instability and neuromuscular abnormalities) following the concomitant use of ondansetron and other serotonergic drugs (including SSRIs and SNRIs) (see section 4.4).

Apomorphine

Based on reports of profound hypotension and loss of consciousness when ondansetron was administered with apomorphine hydrochloride, concomitant use with apomorphine is contraindicated.

Phenytoin, Carbamazepine and Rifampicin

In patients treated with potent inducers of CYP3A4 (i.e. phenytoin, carbamazepine, and rifampicin), the oral clearance of ondansetron was increased and ondansetron blood concentrations were decreased.

Tramadol

Data from small studies indicate that ondansetron may reduce the analgesic effect of tramadol.

4.6 Fertility, pregnancy and lactation

Women of childbearing potential

Women of childbearing potential should consider the use of contraception.

Pregnancy:

Based on human experience from epidemiological studies, ondansetron is suspected to cause orofacial malformations when administered during the first trimester of pregnancy.

In one cohort study including 1.8 million pregnancies, first trimester ondansetron use was associated with an increased risk of oral clefts (3 additional cases per 10 000 women treated; adjusted relative risk, 1.24, (95% CI 1.03–1.48)).

The available epidemiological studies on cardiac malformations show conflicting results. Animal studies do not indicate direct or indirect harmful effects with respect to reproductive toxicity.

Ondansetron should not be used during the first trimester of pregnancy.

Breast-feeding

Tests have shown that ondansetron passes into the milk of lactating animals (see section 5.3). It is therefore recommended that mothers receiving ondansetron should not breast-feed their babies.

4.7 Effects on ability to drive and use machines

Ondansetron has no or negligible influence on the ability to drive and use machines.

4.8 Undesirable effects

Adverse events are listed below by system organ class and frequency.

Frequencies are defined as: very common (>1/10), common (>1/100 and <1/10), uncommon (>1/1000 and <1/100), rare (>1/10,000 and <1/1000) and very rare (<1/10,000).

Very common, common and uncommon events were generally determined from clinical trial data. The incidence in placebo was taken into account. Rare and very rare events were generally determined from post-marketing spontaneous data.

The following frequencies are estimated at the standard recommended doses of ondansetron according to indication and formulation.

Very common

Common

Uncommon

Rare

Very rare

Immune system disorders

Immediate hypersensitiv ity reactions sometimes severe, including anaphylaxis.

Very common

Common

Uncommon

Rare

Very rare

Nervous system disorders

Headache.

Seizures, movement disorders (including extrapyramid al reactions such as dystonic reactions, oculogyric crisis and dyskinesia)1

Dizziness during rapid IV administrate n, which in most cases is prevented or resolved by lengthening the infusion period.

Eye disorders

Transient visual disturbances (e.g. blurred vision) predominantl y during IV administrate n.

Transient blindness predominantl y during intravenous administrate n2

Cardiac disorders

Arrhythmias, chest pain with or without ST segment depression, Bradycardia.

QTc prolongation (including Torsade de pointes)

Vascular disorders

Sensation of warmth or flushing.

Hypotension.

Respiratory, thoracic and mediastinal disorders

Hiccups.

Gastrointestin al disorders

Constipation.

Hepatobiliary disorders

Asymptomat ic increases in liver function tests3

Very common

Common

Uncommon

Rare

Very rare

General disorders and administratio n site conditions

Local IV injection site reactions.

1. Observed without definitive evidence of persistent clinical sequelae.

2. The majority of the blindness cases reported resolved within 20 minutes. Most patients had received chemotherapeutic agents, which included cisplatin. Some cases of transient blindness were reported as cortical in origin.

3. These events were observed commonly in patients receiving chemotherapy with cisplatin.

Paediatric population

The adverse event profile in children and adolescents was comparable to that seen in adults.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the Yellow Card Scheme (www.mhra.gov.uk/yellowcard).

4.9 Overdose

4.9 Overdose

Symptoms and Signs

There is limited experience of ondansetron overdose. In the majority of cases, symptoms were similar to those already reported in patients receiving recommended doses (see section 4.8). Manifestations that have been reported include visual disturbances, severe constipation, hypotension and a vasovagal episode with transient second-degree AV block.

Ondansetron prolongs the QT interval in a dose-dependent fashion. ECG monitoring is recommended in cases of overdose.

Treatment

There is no specific antidote for ondansetron, therefore in all cases of suspected overdose, symptomatic and supportive therapy should be given as appropriate.

The use of ipecacuanha to treat overdose with ondansetron is not recommended, as patients are unlikely to respond due to the anti-emetic action of ondansetron itself.

Paediatric population

Paediatric cases consistent with serotonin syndrome have been reported after inadvertent oral overdoses of ondansetron (exceeded estimated ingestion of 4 mg/kg) in infants and children aged 12 months to 2 years.

5 PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Antiemetics and antinauseants, Serotonin (5HT3) antagonists

ATC code: A04AA01

Ondansetron is a potent, highly selective 5HT3 receptor-antagonist. Its precise mode of action in the control of nausea and vomiting is not known. Chemotherapeutic agents and radiotherapy may cause release of 5HT in the small intestine initiating a vomiting reflex by activating vagal afferents via 5HT3 receptors. Ondansetron blocks the initiation of this reflex. Activation of vagal afferents may also cause a release of 5HT in the area postrema, located on the floor of the fourth ventricle, and this may also promote emesis through a central mechanism. Thus, the effect of ondansetron in the management of the nausea and vomiting induced by cytotoxic chemotherapy and radiotherapy is probably due to antagonism of 5HT3 receptors on neurons located both in the peripheral and central nervous system. The mechanisms of action in post-operative nausea and vomiting are not known but there may be common pathways with cytotoxic induced nausea and vomiting.

In a pharmaco-psychological study in volunteers ondansetron has not shown a sedative effect.

Ondansetron does not alter plasma prolactin concentrations.

The role of ondansetron in opiate-induced emesis is not yet established.

QT Prolongation

The effect of ondansetron on the QTc interval was evaluated in a double blind, randomised, placebo and positive (moxifloxacin) controlled, crossover study in 58 healthy adult men and women. Ondansetron doses included 8 mg and 32 mg infused intravenously over 15 minutes. At the highest tested dose of 32 mg, the maximum mean (upper limit of 90% CI) difference in QTcF from placebo after baseline correction was 19.6 (21.5) msec. At the lower tested dose of 8 mg, the maximum mean (upper limit of 90% CI) difference in QTcF from placebo after baseline correction was 5.8 (7.8) msec. In this study, there were no QTcF measurements greater than 480 msec and no QTcF prolongation was greater than 60 msec. No significant changes were seen in the measured electrocardio­graphic PR or QRS intervals.

Paediatric population

CINV

The efficacy of ondansetron in the control of emesis and nausea induced by cancer chemotherapy was assessed in a double-blind randomised trial in 415 patients aged 1 to 18 years (S3AB3006). On the days of chemotherapy, patients received either ondansetron 5 mg/m2 intravenous + ondansetron 4 mg orally after 8–12 hrs or ondansetron 0.45 mg/kg intravenous + placebo orally after 8–12 hrs. Post-chemotherapy both groups received 4 mg ondansetron syrup twice daily for 3 days. Complete control of emesis on worst day of chemotherapy was 49% (5 mg/m2 intravenous + ondansetron 4 mg orally) and 41% (0.45 mg/kg intravenous + placebo orally). Post-chemotherapy both groups received 4 mg ondansetron syrup twice daily for 3 days. There was no difference in the overall incidence or nature of adverse events between the two treatment groups.

A double-blind randomised placebo-controlled trial (S3AB4003) in 438 patients aged 1 to 17 years demonstrated complete control of emesis on worst day of chemotherapy in:

73% of patients when ondansetron was administered intravenously at a dose of 5 mg/m2 intravenous together with 2–4 mg dexamethasone o­rally

71% of patients when ondansetron was administered as syrup at a dose of 8 mg + 2–4 mg dexamethasone orally on the days of chemotherapy. Post-chemotherapy both groups received 4 mg ondansetron syrup twice daily for 2 days. There was no difference in the overall incidence or nature of adverse events between the two treatment groups.

The efficacy of ondansetron in 75 children aged 6 to 48 months was investigated in an open-label, non-comparative, single-arm study (S3A40320). All children received three 0.15 mg/kg doses of intravenous ondansetron, administered 30 minutes before the start of chemotherapy and then at four and eight hours after the first dose. Complete control of emesis was achieved in 56% of patients.

Another open-label, non-comparative, single-arm study (S3A239) investigated the efficacy of one intravenous dose of 0.15 mg/kg ondansetron followed by two oral ondansetron doses of 4 mg for children aged < 12 yrs and 8 mg for children aged > 12 yrs (total no. of children n= 28). Complete control of emesis was achieved in 42% of patients.

PONV

The efficacy of a single dose of ondansetron in the prevention of postoperative nausea and vomiting was investigated in a randomised, double-blind, placebo-controlled study in 670 children aged 1 to 24 months (post-conceptual age >44 weeks, weight > 3 kg). Included subjects were scheduled to undergo elective surgery under general anaesthesia and had an ASA status < III. A single dose of ondansetron 0.1 mg/kg was administered within five minutes following induction of anaesthesia. The proportion of subjects who experienced at least one emetic episode during the 24-hour assessment period (ITT) was greater for patients on placebo than those receiving ondansetron ((28% vs. 11%, p <0.0001).

Four double-blind, placebo-controlled studies have been performed in 1469 male and female patients (2 to 12 years of age) undergoing general anaesthesia. Patients were randomised to either single intravenous doses of ondansetron (0.1 mg/kg for paediatric patients weighing 40 kg or less, 4 mg for paediatric patients weighing more than 40 kg; number of patients = 735)) or placebo (number of patients = 734). Study drug was administered over at least 30 seconds, immediately prior to or following anaesthesia induction. Ondansetron was significantly more effective than placebo in preventing nausea and vomiting. The results of these studies are summarised in Table 3.

Table 3 Prevention and treatment of PONV in Paediatric Patients – Treatment response over 24 hours

Study

Endpoint

Ondansetron %

Placebo %

P value

S3A380

CR

68

39

<0.001

S3GT09

CR

61

35

<0.001

S3A381

CR

53

17

<0.001

S3GT11

no

nausea

64

51

0.004

S3GT11

no emesis

60

47

0.004

CR = no emetic episodes, rescue or withdrawal

5.2 Pharmacokinetic properties

The pharmacokinetic properties of ondansetron are unchanged on repeat dosing.

A direct correlation of plasma concentration and anti-emetic effect has not been established.

Absorption

Following oral administration, ondansetron is passively and completely absorbed from the gastrointestinal tract and undergoes first pass metabolism (Bioavailability is about 60 %.). Peak plasma concentrations of about 30 ng/ml are attained approximately 1.5 hours after an 8 mg dose. For doses above 8 mg the increase in ondansetron systemic exposure with dose is greater than proportional; this may reflect some reduction in first pass metabolism at higher oral doses. Mean bioavailability in healthy male subjects, following the oral administration of a single 8 mg tablet, is approximately 55 to 60%. Bioavailability, following oral administration, is slightly enhanced by the presence of food but unaffected by antacids. Studies in healthy elderly volunteers have shown slight, but clinically insignificant, age-related increases in both oral bioavailability (65%) and half-life (5 hours) of ondansetron.

The disposition of ondansetron following oral, intramuscular and intravenous dosing in adults is similar with a terminal half-life of about 3 hours and steady state volume of distribution of about 140L. Equivalent systemic exposure is achieved after intramuscular and intravenous administration of ondansetron.

A 4 mg intravenous infusion of ondansetron given over 5 minutes results in peak plasma concentrations of about 65 ng/ml. Following intramuscular administration of ondansetron, peak plasma concentrations of about 25 ng/ml are attained within 10 minutes of injection.

Following administration of ondansetron suppository, plasma ondansetron concentrations become detectable between 15 and 60 minutes after dosing. Concentrations rise in an essentially linear fashion, until peak concentrations of 20–30 ng/ml are attained, typically 6 hours after dosing. Plasma concentrations then fall, but at a slower rate than observed following oral dosing due to continued absorption of ondansetron. The absolute bioavailability of ondansetron from the suppository is approximately 60% and is not affected by gender. The half-life of the elimination phase following suppository administration is determined by the rate of ondansetron absorption, not systemic clearance and is approximately 6 hours. Females show a small, clinically insignificant, increase in half-life in comparison with males.

Distribution

The disposition of ondansetron following oral, intramuscular (IM) and intravenous (IV) dosing is similar with a steady state volume of distribution of about 140 l. Equivalent systemic exposure is achieved after IM and IV administration of ondansetron.

Ondansetron is not highly protein bound (70–76%).

Biotransformation

Ondansetron is cleared from the systemic circulation predominantly by hepatic metabolism through multiple enzymatic pathways. The absence of the enzyme CYP2D6 (the debrisoquine polymorphism) has no effect on ondansetron’s phar­macokinetics.

Elimination

Less than 5% of the absorbed dose is excreted unchanged in the urine. Terminal half-life is about 3 hours.

Special patient populations

Children and adolescents (aged 1 month to 17 years)

In paediatric patients aged 1 to 4 months (n=19) undergoing surgery, weight normalised clearance was approximately 30% slower than in patients aged 5 to 24 months (n=22) but comparable to the patients aged 3 to 12 years. The halflife in the patient population aged 1 to 4 month was reported to average 6.7 hours compared to 2.9 hours for patients in the 5 to 24 month and 3 to 12 year age range. The differences in pharmacokinetic parameters in the 1 to 4 month patient population can be explained in part by the higher percentage of total body water in neonates and infants and a higher volume of distribution for water soluble drugs like ondansetron.

In paediatric patients aged 3 to 12 years undergoing elective surgery with general anaesthesia, the absolute values for both the clearance and volume of distribution of ondansetron were reduced in comparison to values with adult patients. Both parameters increased in a linear fashion with weight and by 12 years of age, the values were approaching those of young adults. When clearance and volume of distribution values were normalised by body weight, the values for these parameters were similar between the different age group populations. Use of weight-based dosing compensates for age-related changes and is effective in normalising systemic exposure in paediatric patients.

Population pharmacokinetic analysis was performed on 428 subjects (cancer patients, surgery patients and healthy volunteers) aged 1 month to 44 years following intravenous administration of ondansetron. Based on this analysis, systemic exposure (AUC) of ondansetron following oral or IV dosing in children and adolescents was comparable to adults, with the exception of infants aged 1 to 4 months. Volume was related to age and was lower in adults than in infants and children. Clearance was related to weight but not to age with the exception of infants aged 1 to 4 months. It is difficult to conclude whether there was an additional reduction in clearance related to age in infants 1 to 4 months or simply inherent variability due to the low number of subjects studied in this age group. Since patients less than 6 months of age will only receive a single dose in PONV a decreased clearance is not likely to be clinically relevant.

Renal impairment

In patients with renal impairment (creatinine clearance 15–60 ml/min), both systemic clearance and volume of distribution are reduced following IV administration of ondansetron, resulting in a slight, but clinically insignificant, increase in elimination half-life (5.4 h). A study in patients with severe renal impairment who required regular haemodialysis (studied between dialyses) showed ondansetron’s phar­macokinetics to be essentially unchanged following IV administration.

Elderly

Early Phase I studies in healthy elderly volunteers showed a slight age-related decrease in clearance, and an increase in half-life of ondansetron. However, wide inter-subject variability resulted in considerable overlap in pharmacokinetic parameters between young (< 65 years of age) and elderly subjects (> 65 years of age) and there were no overall differences in safety or efficacy observed between young and elderly cancer patients enrolled in CINV clinical trials to support a different dosing recommendation for the elderly.

Based on more recent ondansetron plasma concentrations and exposureresponse modelling, a greater effect on QTcF is predicted in patients >75 years of age compared to young adults. Specific dosing information is provided for patients over 65 years of age and over 75 years of age (see section 4.2).

Hepatic impairment

Following oral, intravenous or intramuscular dosing in patients with severe hepatic impairment, ondansetron’s sys­temic clearance is markedly reduced with prolonged elimination half-lives (15–32 h) and an oral bioavailability approaching 100% due to reduced pre-systemic metabolism. The pharmacokinetics of ondansetron following administration as a suppository have not been evaluated in patients with hepatic impairment.

Gender differences

Gender differences were shown in the disposition of ondansetron, with females having a greater rate and extent of absorption following an oral dose and reduced systemic clearance and volume of distribution (adjusted for weight).

5.3 Preclinical safety data

5.3 Preclinical safety data

Preclinical data revealed no special hazard for humans based on conventional studies of safety, pharmacology, repeated dose toxicity, genotoxicity, carcinogenic potential and toxicity to reproduction.

Ondansetron and its metabolites accumulate in the milk of rats; milk/plasma-ratio was 5.2.

A study in cloned human cardiac ion channels has shown ondansetron has the potential to affect cardiac repolarisation via blockade of HERG potassium channels. The clinical relevance of this finding is uncertain.

6 PHARMACEUTICAL PARTICULARS

6.1 List of excipients

citric acid monohydrate sodium citrate

sodium chloride

water for injection

6.2 Incompatibilities

This medicinal product must not be mixed with other medicinal products except those mentioned in section 6.6.

6.3 Shelf life

3 years

After opening (and dilution): Store at 2–8°C and use within 24 hours

Under normal room lighting conditions or daylight for at least 24 hours, no protection from light is necessary while infusion takes place.

Chemical and physical use stability has been demonstrated for 24 hours at 28°C From a microbiological point of view, the product should be used immediately. If not used immediately, in-use storage times and conditions prior to use are the responsibility of the user and would not be longer than 24 hours at 2 to 8°C, unless dilution has taken place in controlled and validated aseptic conditions.

6.4 Special precautions for storage

Keep the ampoules in the outer carton in order toprotect from light.

For storage conditions of the unopened and the diluted medicinal product, see section 6.3.

6.5 Nature and contents of container

Type I amber glass ampoules.

2ml ampoules and 4 ml ampoules

Pack sizes: 1, 2, 5, 6, 10 and 5 × 5 ampoules packed in a carton.

Not all pack sizes may be marketed.

6.6 Special precautions for disposal and other handling

6.6 Special precautions for disposal and other handling

Compatibility with intravenous fluids.

Ondansetron 2 mg/ml solution for injection should only be admixed with those infusion solutions which are recommended:

Sodium Chloride Intravenous Infusion 9 mg/ml (0.9%w/v)

Glucose Intravenous Infusion 50 mg/ml (5%w/v)

Mannitol Intravenous Infusion 100 mg/ml (10%w/v)

Ringers Intravenous Infusion

Potassium Chloride 3mg/ml (0.3%w/v) and Sodium Chloride 9mg/ml (0.9%w/v) Intravenous Infusion

Potassium Chloride 3mg/ml (0.3%w/v) and Glucose 50mg/ml (5%w/v) Intravenous Infusion

Either in type I glass bottles or plastic infusion bags.

Compatibility with other drugs:

Ondansetron 2 mg/ml solution for injection may be administered by intravenous infusion at 1mg/hour, e.g. from an infusion bag or syringe pump. The following drugs may be administered via the Y-site of the Ondansetron 2 mg/ml solution for injection giving set for ondansetron concentrations of 16 to 160 micrograms/ml (e.g. 8 mg/500 ml and 8 mg/50 ml respectively):

Cisplatin: Concentrations up to 0.48 mg/ml (e.g. 240 mg in 500 ml) administered over one to eight hours.

5-Fluorouracil: Concentrations up to 0.8 mg/ml (e.g. 2.4g in 3 litres or 400mg in 500ml) administered at a rate of at least 20 ml per hour (500 ml per 24 hours). Higher concentrations of 5-fluorouracil may cause precipitation of ondansetron. The 5-fluorouracil infusion may contain up to 0.045%w/v magnesium chloride in addition to other excipients shown to be compatible.

Carboplatin: Concentrations in the range 0.18 mg/ml to 9.9 mg/ml (e.g. 90 mg in 500 ml to 990 mg in 100 ml), administered over ten minutes to one hour.

Etoposide: Concentrations in the range 0.14 mg/ml to 0.25 mg/ml (e.g. 72 mg in 500 ml to 250 mg in 1 litre), administered over thirty minutes to one hour.

Ceftazidime: Doses in the range 250 mg to 2000 mg reconstituted with water for injections as recommended by the manufacturer (e.g. 2.5 ml for 250 mg and 10 ml for 2g ceftazidime) and given as an intravenous bolus injection over approximately five minutes.

Cyclophosphamide: Doses in the range 100 mg to 1 g, reconstituted with water for injections, 5 ml per 100 mg cyclophosphamide, as recommended by the manufacturer and given as an intravenous bolus injection over approximately five minutes.

Doxorubicin: Doses in the range 10–100mg reconstituted with water for injections, 5 ml per 10 mg doxorubicin, as recommended by the manufacturer and given as an intravenous bolus injection over approximately 5 minutes.

Dexamethasone: Dexamethasone sodium phosphate 20mg may be administered as a slow intravenous injection over 2–5 minutes via the Y-site of an infusion set delivering 8 or 16 mg of ondansetron diluted in 50–100ml of a compatible infusion fluid over approximately 15 minutes. Compatibility between dexamethasone sodium phosphate and ondansetron has been demonstrated supporting administration of these drugs through the same giving set resulting in concentrations in line of 32 microgram –2.5mg/ml for dexamethasone sodium phosphate and 8 microgram – 1mg/ml for ondansetron.

Any unused medicinal product or waste material should be disposed of in accordance with local requirements.

7 MARKETING AUTHORISATION HOLDER

Sandoz Limited

Frimley Business Park

Frimley

Camberley

Surrey

GU16 7SR

United Kingdom

8 MARKETING AUTHORISATION NUMBER(S)

PL 04416/0602

9 DATE OF FIRST AUTHORISATION/RENEWAL OF THEAUTHORISATION

21st July 2005